其缺点是粒子的再现象的表面细节不清楚。

(3) 同轴全息照相光路

其光路如图 6 所示。一束平行的相干光直接照 明粒子场,照射到粒子上的光通过粒子发生衍射,即 为物光;未碰到粒子的光直接透射过去,即为同轴参 考光。这时物光和参考光发生干涉,记录在全息干 板上即为全息图,称为同轴夫琅和费全息图。

图 6 同轴全息照相光路示意图

粒子场的参量通常表达为远场数 $N = \frac{Z\lambda}{D^2}$ 。这 里 Z 是粒子离开全息干板的距离, λ 为入射光的波 长, D 是粒子的直径。一般在远场数小于100时,摄 取的全息图才能再现出较为清晰的粒子象。例如一 个 10 微米的粒子,当它离开全息干板 1 厘米以外 时,就不能得到一个清晰的再现象。 图7就是我们用这种光路记录的一个喷雾器雾 滴的全息图摄得的一张照片。根据其再现象,我们 测得粒子直径在30 微米到240 微米之间。

图7 由雾锥同轴全息图得到的一张再现象

若要测量较小的粒子,同样可以采用有透镜系 统。

同轴全息照相光路,虽然有光路简单、使用方便 等优点,但是当粒子密度很大或粒子场的深度很大 时,同轴全息术就不适用了。因为要想获得一幅好 的同轴全息图,必须要有足够的光通量未受粒子所 调制来作参考光。一般约为总通量的80%左右。

> (哈尔滨科学技术大学 激光教研室喷射现象研究小组)

激光全息减振平台系统研究

本文对激光全息实验常用的块体式 减振 平台, 用理论力学描述,经过简化处理,给出非耦合振动方 程组和相应的减振曲线理论公式。利用海绵的非线 性实验曲线讨论了自振频率的最佳值问题。利用原 有的平台和海绵,建成了 $f_{0x}=1.90$ 赫, $f_{0x}=1.11$ 赫, $f_{0y}=0.97$ 赫的减振平台。

由文献[1]的公式(18)

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{g}{\sigma h M g/S}},$$

得知自振频率 f_0 是由海绵的压缩系数 σ 、海绵高度 h、平台质量 M 及海绵截面积 S 四个参数决定的, g 为重力加速度。工作点 $\Delta h/h$ 的选取是与压缩系 数 σ 的非线性及相应的 Mg/S 值有关,也就是说非 线性对决定自振频率 f_0 大小是涉及到 $\sigma = Mg/S_o$ $\Delta h/h$ 选取小些, Mg/S 也要小些,但由于非线性, σ 值增大,使 f_0 仍有可能降低。由表1的计算结果可 见, f_0 有最佳值(极小值),平台重量也不是越重越 好。计算中未考虑海绵本身的质量和弹性后效等问 题,表1中数值只说明有最佳值的规律性,而不是给 出定量结果。海绵高度 h 不受非线性影响,但 h 太 大系统机械稳定性不好,从我们的实验情况, h 可达 80 厘米机械稳定性还是可以的。

N	1	2	3	4	5	6	7	8
∆h/h	0.045	0.230	0.371	0.390	0.530	0.630	0.682	0.716
Mg/S	0.010	0.050	0.100	0.110	0.240	0.544	0.854	1.170
σ	4.95	3.67	2.04	1.82	0.643	0.219	0.131	0.0538
h (厘米)	76.5	76.5	76.5	76.5	76.5	76.5	76.5	76.5
fo(赫)	2.56	1.33	1.26	1.27	1.45	1.65	1.71	2.27

表1 自振频率的计算值

• 61 •

利用现有的平台和海绵,使海绵的截面积增大 1/8,海绵高度 h 为 76.5 厘米,压缩到 52.5 厘米,建 成的平台系统见图1。

图1 激光全息减振平台系统

(1) 平台系统自振频率及非弹性阻力系数的实验测定。

利用地震仪绘出系统的振动曲线如图2所示。 从曲线上算出: $f_{0x}=1.90$ 赫; $f_{0x}=1.11$ 赫; $f_{0y}=$

0.97 赫和 $r_z = 0.178$; $r_x = 0.110$; $r_y = 0.245$ 。

从上述测得的结果来看,虽然 h=76.5 厘米,较 文献[1]的 h=82.5 厘米有所减小,截面积 S 有所增 大,但由于σ的非线性,σ值增大,则使 f₀,的值仍 有所减小。这点与不考虑非线性情况有相反的结 论。

(2) 减振曲线和减振效率值见图 3 和表2。

时分标记

图 3 台上、地面减振效率对比实验记录(纸速 4 毫米/秒)

表2 减振效率的实测值与计算值

方向	fo (赫)	r	地面振动频 率f(赫)	地面振动振幅 A (放大值)(毫米)	台上振幅 A' (放大值)(毫米)	减振效率实 测值(%)	减振效率计 算值(%)
ø	1.90	0.178	≈8	≈15.0	≈1	≈94.0	93.4
x	1.11	0.110	≈8	≈14.5	<0.1	≈99.3	98.0
y	0.97	0.245	≈8	≈14.0	<0.1	≈99.3	99.4

例: 地面振幅 $A_x = 1$ 微米时,则台上振幅 $A'_x = 0.007 \times 1$ 微米 = 0.007 微米

地面振幅 $A_x=2$ 微米时,则台上振幅 $A'_x=0.007 \times 2$ 微米=0.014 微米

总之,我们的工作有下列特点:

1. 平台系统的自振频率 f_0 是物理减振的关键 参数。 考虑到非线性,利用已有条件建成的减振平 台,测得自振频率 $f_0=1.90$ 赫,优于 ~ 2.5 赫、5.5赫及 1.99 赫⁽¹⁾的结果,测得参数较全。

2. 从表 2 可见, 减振效率的理论计算值与实验 值符合的很好。

 水平方向的减振效率特好,而全息光栅实验 干涉条纹的移动主要受水平方向的振动干扰。我们

新闻线、外发展、新动向特征性和国内派完全关系

的全息实验室位于市区广场马路约60米处,载重卡 车、公共汽车、无轨电车等振源干扰较频繁。未控隔 振地基,减振平台上的 Michelson 干涉条纹无明显 移动。

参考文献

[1] 中国科学院长春物理所; 1979, 《激光全息减振平台 系统研究>(一)。

(中国科学院长春物理所 杨恒志)

超声激光抗癌中草药研究取得进展

部语于、下等、正、韩、范华、希腊宇持及能丁学校、董许上州人下站的手来, 武法武

a. mas 15. FF 为不成"不不定这目录尽定因去理念,如不同,则是擅称但词体不当也 点才他们多关系。如此目录得这个了,作者,任何名为,不受"告", 我 再做"

許信臣若能何可許照此 和許問意任,請予與下於時後, 法將中於

在一定的条件下,超声激光联合与物质相互作 用,引起物质内部结构的变化,派生出新的具有独特 性能的化合物。一九七八年五月问世的声光抗癌片 2号(原名:声光抗癌敏),就是根据这个原理制成 的。它已不是原来的中草药,因其化学成份已经变 化;但又不是化学药品,因不是化学合成,不是人工 提取,而是一种新的抗癌新药。这种新药经一年多 来对消化道癌患者的 130 多例门诊观察和 128 例住 院观察,临床实验结果表明:经声光效应后的中草药 片剂较未经声光效应的原中草药片剂,临床用药剂 量减少了七倍,疗效则提高了四倍,瘤体缩小者从 0%提高到 10.4%,而起效迅速并未见毒副作用。 (上海市仪器仪表研究所 罗列凡)

法, "你你去做你什么你你你你你,我要你你,我是你?

• 63 •